Trigonometria sana muodostuu kreikan kielen sanoista tri ”kolme”, gono ”kulma” ja metria ”mitata”. Trigonometria perustuu suorakulmaisten kolmioiden tutkimiseen. Siinä tarkastellaan kolmion kulmien ja sivujen välisiä suhteita. Perustana on se geometrinen tosiasia, että suorakulmaisessa kolmiossa sivujen pituuksien suhteet ovat riippuvaisia vain kulmien suuruuksista. Tärkeimmät näistä kulman määräämistä suhdeluvuista ovat sini, kosini ja tangentti. Lukuarvojen laskeminen on vaivalloista, mutta ne saadaan valmiina taulukoista tai laskimella.
Trigonometria kehittyi tähtien tutkimisesta. Trigonometristen funktioiden avulla on ratkaistu monenlaisia geometrisia ongelmia jo yli 2 000 vuotta. Käytännön tarpeita palvelevia trigonometrisiä taulukoita laativat egyptiläiset ja intialaiset jo varhain, mutta ne suhteet, joita me käytämme nykyään, esitti Hipparkhos noin 150 eKr.
Trigonometrialla on käyttöä tekniikassa, arkkitehtuurissa, merenkulussa ja monilla muilla käytännön aloilla. Trigonometrian avulla on mahdollista suorittaa mittauksia, jotka muutoin olisivat hyvin hankalia. Tällaisia ovat esimerkiksi vaikeakulkuisessa maastossa tai merellä olevien kohteiden välisten etäisyyksien mittaaminen. Myös ilmassa ja avaruudessa oleviin kappaleisiin liittyviä tehtäviä voidaan ratkoa trigonometristen funktioiden avulla.
Trigonometristen funktioiden avulla voidaan kolmion tunnetuista osista helposti laskea muiden osien mitat. Mutkikkaammat kuviot lasketaan jakamalla ne ensiksi sopiviksi kolmioiksi, mikä soveltuu myös avaruuskuvioihin. Kolmiomittaus pohjautuu siihen, että kun tunnetaan kolmion kulmat (joiden summa on aina 180˚) ja yhden sivun pituus, voidaan laskea muiden sivujen pituudet. Kulmat määritetään käytännössä tähtäämällä kaukoputken kaltaisella laitteella vuorotellen eri pisteisiin ja katsomalla kaukoputken jalustan asteikkolevystä kääntymiskulmat.
Trigonometriset suhteet ovat osoittautuneet monella tavoin tärkeiksi matemaattisiksi funktioiksi. Ne ovat keskeisessä asemassa myös varsin abstrakteissa teorioissa, mm. sähkötekniikassa, säteilyfysiikassa ja informaatioteoriassa. Tällöin funktioiden käsitettä on laajennettu koskemaan suurempiakin kulmia kuin kolmiossa voi esiintyä esim. päätepisteissä ympäri kääntyvää sädettä.
Trigonometristen funktioiden ominaisuudet perustuvat geometrisiin tarkasteluihin, mutta ne ovat tärkeitä värähtelevien ilmiöiden teoreettisessa tutkimuksissa. Jos tarkastellaan sinifunktion arvoja myös terävää kulmaa suuremmilla kulmilla aina oikokulmaan asti havaitaan, että sinin lukuarvo vaihtelee lukujen -1 ja 1 välillä. Kyseessä on jaksollinen funktio, joka tekee aina yhden täydellisen heilahduksen 360 asteen matkalla. Sinifunktio kuvaa kaikkia yksinkertaisia heilahteluja, värähtelyjä ja aaltoliikkeitä. Esimerkkeinä ovat mekaaniset värähtelyt, ääniaallot, niin radioaallot kuin valon säteilykin, sekä tavallinen vaihtovirta. Mutkikkaammat värähtelyt voidaan aina ajatella ja matemaattisesti käsitellä yksinkertaisista sinimuotoisista värähtelyistä koostuvina. Aaltoliike etenee yleensä siten, etteivät samanaikaiset, taajuudeltaan erilaiset värähtelyt häiritse toisiaan. Musiikinkuuntelussa ei olisi paljon mieltä, jos emme pystyisi erottamaan samanaikaisesti eri äänenkorkeuksia, vaikka ne ilmassa etenevät yhtyneinä ja esimerkiksi äänilevyssä ovat yhtenä ainoana urana.
Avoin matematiikka 9Osio 2: Trigonometriaa ja geometrian tietojen syventämistä5.6.2014